Statistical 3D ‘atomistic’ simulation of decanano MOSFETs
نویسندگان
چکیده
A 3D statistical ‘atomistic’ simulation technique has been developed to study the effect of the random dopant induced parameter fluctuations in aggressively scaled MOSFETs. Efficient implementation of the ‘atomistic’ simulation approach has been used to investigate the threshold voltage standard deviation and lowering in the case of uniformly doped MOSFETs, and in fluctuation-resistant architectures utilising epitaxial-layers and delta-doping. The effect of the random doping in the polysilicon gate on the threshold voltage fluctuations has also been thoroughly investigated. The influence of a single-charge trapping on the channel conductivity in decanano MOSFETs is studied in the ‘atomistic’ framework as well. Quantum effects are taken into consideration in our ‘atomistic’ simulations using the density gradient formalism. c © 2000 Academic Press
منابع مشابه
Efficient 3D ‘Atomistic’ Simulation Technique for Studying of Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Decanano MOSFETs
A 3D ‘atomistic’ simulation technique to study random dopant induced threshold voltage lowering and fluctuations in sub 0.1 pm MOSFlETs is presented. It allows statistical analysis of random impurity effects down to the individual impurity level. Efficient algorithms based on a single solution of Poisson’s equation, followed by the solution of a simplified current continuity equation are used i...
متن کاملEffect of single-electron interface trapping in decanano MOSFETs: A 3D atomistic simulation study
We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random ...
متن کاملThe Use of Quantum Potentials for Confinement in Semiconductor Devices
As MOSFETs are scaled into sub 100 nm (decanano) dimensions, quantum mechanical confinement and tunnelling start to dramatically affect their characteristics. In this paper we describe the introduction of quantum corrections within a 3D drift diffusion simulation framework using quantum potentials. We compare the density gradient (DG) and the effective potential (EP) approaches in term of accur...
متن کاملQuantum Corrections in the Simulation of Decanano MOSFETs
Quantum mechanical confinement and tunnelling play an important role in present and future generation decanano (sub 100 nm) MOSFETs and have to be properly taken into account in the simulation and design. Here we present a simple approach of introducing quantum corrections in a 3D drift diffusion simulation framework using the density gradient (DG) algorithm. We discuss the calibration of the D...
متن کاملRandom Telegraph Signal Amplitudes in Sub 100 nm (Decanano) MOSFETs: A 3D ‘Atomistic’ Simulation Study
In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999